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Autoregressive models based on the Transformer architecture have

achieved state of the art performance in various machine learning domains,

ranging from natural language processing to multimodal foundation mod-

els. Transformers process sequential data using the attention mechanism,

without any recurrent or convolutional layers. While the performance of

transformer based models is impressive, they have three main drawbacks.

First, transformers operate on a context window of finite size, and hence

it cannot process sequences larger than the size of its context window.

Second, the computational cost of attention mechanism is quadratic O(N2)

in the length (N) of the sequence. Third, the output layer of transformer,

which predicts probabilities of next token in the sequence, cannot scale

well for datasets of huge token vocabulary. Because of these limitations,

transformer based models are not efficient in modelling and decoding

neural dynamics where due to high sampling rates, the sequence length

can be extremely large and since the possible firing patterns grow ex-

ponentially with respect to number of neurons we record from, the size

of token vocabulary is in trillions of discrete tokens. In this work, we
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present ’Retention based Autoregressive Models’ which overcomes the

limitations of attention based Transformer architectures. Retention based

models can process sequences of variable length, and is not bounded by

a limited context window. Unlike Transformers, the complexity of Reten-

tion mechanism is linear O(N) in the length of the sequence. We apply

Retention mechanisms along with convolutional architectures to build an

autoregressive generative model of neural dynamics, and for decoding

behavior from observed neural spiking data. For generative modeling

tasks, Retention-based models provide quicker inference compared to

transformer-based models. Employing Retention-based models enabled us

to generate neural spike trajectories for 4096 neurons across 5000 timesteps

in just 3.5 minutes on a standard desktop PC. In the context of decoding

neural spikes into behavior, Retention-based models achieve an impressive

R2 score of 76.9. Overall, Retention-based autoregressive models present a

significant advancement, offering enhanced efficiency and scalability for

complex sequence processing tasks in neural dynamics and beyond.
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1
I N T R O D U C T I O N

Hard problems inspire the creation of novel algorithms. These novel algo-
rithms then find application in various contexts, distant from the original
application which it was designed for. Among the hard problems that we
face, understanding the human brain stands out as particularly challeng-
ing. The human brain is an intricate network, where countless neurons
interact in complex ways, leading to thoughts, actions, and behaviors. In
order to understand how the brain works, we need methods that can effi-
ciently model neural activity and the relationship between neural activity
and behavior. In this thesis, we develop efficient methods for learning
neural dynamics and decoding behavior from neural spiking data. Al-
though methods in this thesis are developed specifically for neural data,
we believe that our approach would find application in diverse sequence
modelling tasks in language, finance and engineering.

Machine learning techniques have played a pivotal role in modeling
brain dynamics, and modeling the correlation between neural dynamics
and behaviour [HMW+

18, POC+
18, KTK+

19, SW20]. In [POC+
18], Pan-

darinath et al. introduced LFADS, a method to infer firing rates of neurons
from observed neural spiking activity. LFADS is a sequential variational
autoencoder that uses recurrent neural networks to model neural popula-
tion dynamics. More recently, transformer-based models [VSP+

17, GZ22],
have been applied to learn neural dynamics. In [YP21], Pandarinath et al
introduced Neural Data Transformer, a transformer-based model to learn
neural dynamics. While LFADS and NDT (Neural Data Transformers)
were focused on learning neural dynamics from single trial recordings,
Azabou et.al recently introduced POYO [AAG+

23], a transformer-based
model to learn neural dynamics from multi-session neural recordings.
POYO uses Perceiver IO [JBA+

21] architecture to process neural activity
and infer behaviour.

While these methods differ in the approach taken to model neural ac-
tivity, they all assume that the neural spiking activity is generated by a
poisson process, characterized by instantaneous firing rate of neurons.
In neuroscience literature, this assumption is called as the independent
spike hypothesis [H+

00]. The machine learning problem then reduces to
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introduction 2

inferring instantaneous firing rates of the neurons from observed neural
spiking data. While certain experiments support the independent spike
hypothesis for certain regions of the cortex, it is unclear if this hold true for
all regions of the cortex [SK93]. While the independent spike hypothesis
has provided a useful framework for understanding and modeling neural
activity, it is becoming increasingly clear that more sophisticated models
are needed to fully capture the rich dynamics of the brain. A more compre-
hensive understanding of neural dynamics may require moving beyond
the independent spike hypothesis and considering the complex interac-
tions and dependencies between neurons. This would require building
machine learning models that can predict the trajectory of firing pattern
of a collection of neurons over a time window. In principle, autoregressive
models using parametrized Transformer architecture can be used to model
stochastic dynamics of a collection of neurons. However, challenges arise
when directly applying transformer based models, which, despite their
success in language modeling, face scaling difficulties with neural spiking
data.

Unlike text data, neural recording probes sample on the order of kHz,
which result in extremely long sequences. Moreover, the exponential
growth of possible firing patterns with the number of recorded neu-
rons leads to token vocabularies in the trillions. This work introduces
"Retention-based Autoregressive Models" designed to overcome the short-
comings of attention-based Transformer architectures. Retention-based
models offer the flexibility to process sequences of variable length without
being confined by a limited context window. Unlike Transformers, the com-
putational complexity of the Retention mechanism is linear, addressing
the quadratic costs associated with attention mechanism. The application
of Retention mechanisms, coupled with convolutional architectures, forms
the basis for constructing an autoregressive generative model of neural dy-
namics and decoding behavior from observed neural spiking data. Notably,
Retention-based models outperform Transformers in terms of speed and
efficiency during generative modeling tasks. The ability to generate neural
spike trajectories for a considerable number of neurons across numerous
timesteps within a short time frame underscores the practical advantages
of Retention-based models. In decoding neural spikes into behavior, these
models exhibit an impressive R2 score of 76.9, showcasing their efficacy.

In summary, Retention-based autoregressive models represent a signifi-
cant advancement, offering enhanced efficiency and scalability for complex
sequence processing tasks in neural dynamics and beyond. This research
contributes to bridging the gap between the capabilities of existing mod-
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els and the intricate demands of understanding and interpreting neural
dynamics.



2
P R O B L E M S TAT E M E N T

Imagine we are recording data from D neurons distributed across different
regions of the brain. Let x(ti) ∈ RD denote the observed neural activity
at timestep ti and let yi denote the observed behaviour of the animal at
timestep ti. From the time series dataset D = {(xi, yi, ti)}N

i=1 of neural
recordings, our goal is to construct:

• A predictive model of underlying brain dynamics

• A probabilistic model to predict behaviour of the organism at time
t + 1 given brain recordings until timestep t.

The probability of observing a sequence of neural recordings and behavior
can be expressed as:

p({x1, y1}, {x2, y2}, {x3, y3}, ..) = lim
N→∞

N

∏
i=1

p({xi, yi}|{x1, y1}, {x2, y2}, ..{xi−1, yi−1})

(2.1)
In the context of neural recordings, it is convenient to assume that the neu-
ral recording data and behavior can be modelled with separate probability
distributions of the form:

N

∏
i=1

pd({xi}|{x1}, {x2}, ..{xi−1}) (2.2)

N

∏
i=1

pb({yi}|{x1}, {x2}, ..{xi−1}) (2.3)

Specifically, we assume that that the observed neural spiking data at
timestep ti is not dependent on the behavior variables in the preceding
timesteps. Probability distributions of this nature have been extensively
investigated in the field of language modeling. In conventional autore-
gressive frameworks, the approximation of conditional distributions often
involves the utilization of parameterized models constrained by a finite
context limit [VSP+

17]. While autoregressive models of this kind have
been extremely successful in generating plausible language [RNS+18],
they still struggle to capture long-range dependencies due to the finite
context length limit[Hah20]. Furthermore, the complexity of training and
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problem statement 5

inference of transformer-based models is quadratic O(N2), where N is
the context length of the transformer model. In this work, we introduce
a new class of autoregressive models wherein the per iteration training
complexity and inference time complexity is linear with respect to context
length. This enables us to process substantially longer sequences of neural
data, capturing intricate long-range dependencies that are crucial for un-
derstanding brain dynamics and behavior. The proposed model, which we
term ’Retention based Autoregressive Models’, is specifically designed to
address the computational limitations of traditional transformer models
in the realm of neural data analysis. In the next chapter, we describe the
theory behind Retention based autoregressive models.



3
M E T H O D S

In this chapter, we describe the theory behind Retention based autoregres-
sive models and methods for training retention-based models.

3.1 motivation

To model conditional distributions defined in eq(2.2) and eq(2.3) exactly,
we require a method that can process sequences of variable input length.
In the realm of neural spiking data, which is frequently recorded at a
sampling rate expressed in kHz, we require a method that can efficiently
scale with the length of the sequence. Furthermore, the patterns of neural
activity increase exponentially with respect to the number of neurons, and
hence the number of discrete tokens required to represent neural spike
pattern at time step t can be prohibitively large. For instance, if we are
recording spike signals from 100 neurons, in total there are 2100 possible
firing patterns. Existing Transformer based models cannot be directly ap-
plied to model conditional distributions of this kind, without placing an
assumption on the nature of probability distribution.

To address these challenges, we introduce "Retention", a mathematical
operation to map a sequence of vectors {xi}N

i=1 to real-valued vector ζi
of the same dimension. Retention is inspired by Score-life programming
[Mur23], a novel method to solve sequential decision-making problems. In
Score-life programming [Mur23], Muraleedharan et.al applied the insight
that the binary expansion of a real number can be used to represent a
sequence of discrete variables. After constructing the mapping between
a sequence of discrete variables and real numbers in a bounded inter-
val, functions can be directly defined on the real numbers. By defining
functions using this approach, we can model non-trivial relationships
between elements of a sequence. In prior work [Mur23], has shown that
such functions have unique properties, which can be exploited in devel-
oping efficient methods for solving deterministic reinforcement learning
problems. In our work, we extend this insight to vector-valued variables,
which are typically encountered in deep-learning settings.

6



3.2 retention 7

3.2 retention

Mathematically, retention is defined as an exponentially weighted sum of
a sequence of discrete vectors. If the vectors are drawn from a continuous
space, then we perform a thresholding operation to discretize the vectors.
Specifically, given a sequence of vectors {xi}N

i=1, xi ∈ Rd , Retention
variable ζk ∈ [0, 1)d as:

ζk =
k

∑
j=1

2−(log M)j
M−1

∑
i=0

σ(wi ⊙ xk−j+1 + bi) (3.1)

Here, wi, bi ∈ Rd are trainable parameters for the thresholding operation
defined in inner summation. Given a vector xi ∈ Rd as input, the inner
summation operation acts like a smoothened step function, essentially
discretizing elements of the vector to discrete values in the set: {0, 1, 2, M−
1}. The outer summation operation, with an exponentially decaying factor,
maps the sequence of discrete vectors to a continuous real-valued vector
ζk. If the input data is discrete, or binary as in the case of neural spike
signals, then the thresholding operation can be omitted, and the retention
variable can be defined as:

ζk =
k−1

∑
i=1

2−i(xk−i) (3.2)

Given a sequence of discrete vectors {xi}N
i=1, retention variable ζi stores

the discrete vectors in the binary expansion of ζi. If the vectors {xi}N
i=1 are

continuous, then we perform a thresholding operation first to discretize
the vectors and perform a discounted sum of these discretized vectors.

Retention can also be defined for sequence of matrices {Xi}N
i=1 as:

ζk =
k

∑
j=1

2−(log M)j
M−1

∑
i=0

σ(Wi ⊙ Xk−j+1 + Bi) (3.3)

Modelling Conditional Distributions with Retention Variables

Now, we can approximate the conditional distribution defined in eq(2.2)
and eq(2.3) using retention variables. Specifically, the product of condi-
tional distributions can now be approximated as:

N

∏
i=1

pd({xi}|{x1}, {x2}, ..{xi−1}) ≈
N

∏
i=1

pr({xi}|ζi) (3.4)
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In this case, a sequence of vectors {xj}i
j=1 is encoded in the binary represen-

tation of the Retention variable ζi. Note that in this approach, a sequence
of arbitrary length can be encoded within the binary representation of ζi.

Generative Models for neural spiking data

Now, we apply Retention for generative modeling of neural spike patterns.
Let xi ∈ R denote the recording data from d neurons at time step i. To
learn the dynamics of the brain from neural recordings in an unsupervised
manner, we maximize the following likelihood:

L(X, θ) = −∑
i

log(pd({xi}|ζi; θ)) (3.5)

Here, X = {x1, x2, ....xM}, is the dataset of neural recordings.

Note that in this approach, the context window is not bounded, and
if we use variables of finite precision, then the complexity of learning
the parametrized model pd({xi}|ζi; θ) is independent of the length of the
context window.

Neural Spike to behavior model

To learn the correlation between neural dynamics and behavior, we follow
a similar approach and approximate the conditional distribution defined
in eq(2.3) with:

N

∏
i=1

pb({yi}|{x1}, {x2}, ..{xi−1}) ≈
N

∏
i=1

pb({yi}|ζi) (3.6)

We define the loss function associated with this approach as the negative
log-likelihood of the observed behavioral outcomes given the estimated
neural activity states. Formally, the loss function L is expressed as:

L(X, Y, ϕ) = −∑
i

log pb({yi}|ζi; ϕ)

We further assume that the conditional distribution is of the form:

pb({yi}|ζi; ϕ) = N ( fb(ζi; ϕ), σ2 Id) (3.7)
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After this assumption, the loss function takes the form of Mean Squared
Error loss given by:

L(X, θ) = −∑
i
|| fb(ζi; ϕ)− yi||2 (3.8)

3.3 architecture

For predicting neural dynamics and inferring behavior given spike data,
we employ a convolutional network based on the UNet architecture
[RFB15]. The UNet model has proven to be highly effective in various
image segmentation tasks and is well-suited for our objective of decoding
neural activity.

Our architecture comprises multiple key components designed to handle
the intricacies of spike data and capture the underlying patterns in neural
dynamics. The UNet structure consists of an encoder and decoder network,
facilitating the extraction and reconstruction of features at different abstrac-
tion levels. This enables the model to learn hierarchical representations of
the spatiotemporal input data, enhancing its ability to discern complex
relationships within the neural activity.

For the autoregressive generative model, we use a standard UNet model
with retention variable ζk at the input layer. In our implementation, we
computed the retention variable ζk online, during training. Intuitively,
given a sequence of black and white images that represent neural firing
patterns at various time steps, the retention layer converts the sequence of
black and white images to a single grayscale image, which is then fed into
the UNet architecture. Each pixel in the image corresponds to a neuron or
unit from which the neural spiking data is collected.

In a typical UNet model employed for medical image segmentation
tasks, the output layer predicts the masked image corresponding to the
input image. In our case, the output layer predicts the probability of dif-
ferent neurons firing at the next time step. Since the UNet model is a
fully convolutional network, the model can be trained on a diverse set of
input datasets, consisting of a variable number of input neurons. Hence,
we can utilize the architecture for learning from a large dataset of neural
recordings collected using various experimental setups.

For predicting behavior from observed neural spiking data, we add
extra fully connected layers to the output of the UNet model to predict
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Figure 3.1: Architecture for Autoregressive Generative Model

Figure 3.2: Architecture for decoding behavior from neural spiking data

the behavior variable corresponding to input neural spiking data. Our
Architecture consists of a UNet [RFB15] block to process input images and
fully connected layers for predicting behavior variables from the final layer
of the UNet block.

3.4 training retention based models

In this section, we describe how retention-based models are trained. Re-
tention variables at different timesteps k are related to each other by
a recursive relationship, which can be utilized for developing efficient
training algorithms.
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Recursive relationship between Retention Variables

Retention variable at any time-step k is given by:

ζk = 2−(log M)
M−1

∑
i=0

σ(wi ⊙ xk + bi) + 2−(log M)ζk−1 (3.9)

If the variables xk are discrete vectors, then the thresholding layer can be
omitted and the relation simplifies to:

ζk = 2−1xk + 2−1ζk−1 (3.10)

We can apply the recursive rule to compute the retention variable ζk either
during training the model in an online fashion or we can pre-compute the
sequence of retention variables {ζk}N

k=1. Note that the pre-computation of
retention variables is only possible when the input vectors xk are drawn
from a discrete space.

Online Computation of Retention Variable

In the online version of training Retention-based Autoregressive models,
we apply the recursive rule in eq (3.9) and iteratively compute ζk at each
timestep k. In this approach, we use a temporary variable to store ζk−1
and we update ζk using eq(3.9). Theoretically, the memory required to
store ζk increases linearly with respect to timestep k. This is because, at
each iteration k, we encode a new set of discrete values in the binary
representation of ζk.

Offline Computation of Retention Variable

If the input dataset is drawn from a discrete space, then the retention
variables can be {ζi}N

i=1 and can be pre-computed from the dataset {xi}N
i=1.

After the computation of the retention variables, parametrized models
can be trained similarly to existing supervised learning methods where
a batch of training data is used to compute gradients and update model
weights at each iteration.
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Algorithm 1 Online Learning

1: procedure TrainModel(Data, Epochs)
2: Initialize Model
3: for epoch = 1 to Epochs do
4: ζ = [0, 0, 0, , ]d

5: for k = 1 to N do
6: ζk, Targets← Retention(xk, ζ)
7: ζ = ζk
8: Predictions← ForwardPass(Model, ζk)
9: Loss← ComputeLoss(Predictions, Targets)

10: Perform backpropagation to compute gradients
11: Update Model parameters
12: end for
13: Evaluate model on validation data
14: if performance improves then
15: Update best model
16: end if
17: end for
18: return Trained Model
19: end procedure

Algorithm 2 Offline Learning

1: procedure TrainModel(Data, Epochs)
2: Initialize Model
3: for epoch = 1 to Epochs do
4: for each batch in Data do
5: Inputs, Targets← batch
6: Predictions← ForwardPass(Model, Inputs)
7: Loss← ComputeLoss(Predictions, Targets)
8: Perform backpropagation to compute gradients
9: Update Model parameters

10: end for
11: Evaluate model on validation data
12: if performance improves then
13: Update best model
14: end if
15: end for
16: return Trained Model
17: end procedure



4
R E S U LT S

In this chapter, we present results obtained from training and evaluating
Retention-based models. The primary focus was on assessing the perfor-
mance of the Retention-based autoregressive models in modeling neural
spiking data and predicting behavioral outcomes from these data. The
results are divided into two main sections: (1) Generative Modeling of
Neural Spike Patterns and (2) Neural Spike to Behavior Decoding.

4.1 generative modeling of neural spike patterns

Dataset

The dataset used in this thesis was sourced from a detailed study that
examined the role of the cortex in navigational decision-making in mice
[TCA+

22]. This study involved recording neuronal activity from the pos-
terior cortex of mice engaged in a virtual navigation task, which was
designed to reflect the challenges animals face in integrating sensation,
planning, and action in dynamic environments. The dataset includes neu-
ral recordings from approximately 90,000 neurons in the mouse posterior
cortex collected using two photon imaging technology [MMSS+99]. We
sampled spike trajectories of 4096 neurons from the dataset and created
images representing neural spikes at various time-steps.

Figure 4.1: t=1 Figure 4.2: t=2 Figure 4.3: t=3 Figure 4.4: t=4

Figure 4.5: Neural Spiking Activity at various timesteps

13



4.1 generative modeling of neural spike patterns 14

Training

We trained the model on a single NVIDIA P100 GPU using Adam Op-
timizer [KB14]. For the specific task of generative modeling of neural
dynamics, we employed binary cross entropy as the loss function. This loss
function quantified the disparity between the predicted neural spiking pat-
terns generated by the model and the actual observed neural spike pattern
at the next timestep. We used an initial learning rate of 0.001 and trained
the model for 37 epochs. On NIVIDIA P100 GPU, it took eight hours to
complete model training. Within each epoch, we found that the training
dynamics is a bit unstable (Figure 4.6). However, despite these minor fluc-
tuations, the average loss over epochs consistently decreased, indicative of
the model’s capacity to learn and refine its predictive capabilities (Figure
4.7).

(a) Epoch 1 (b) Epoch 2 (c) Epoch 3 (d) Epoch 4

(e) Epoch 5 (f) Epoch 6 (g) Epoch 7 (h) Epoch 8

Figure 4.6: Training Loss over 8 Epochs

Model Performance

The model demonstrated significant proficiency in capturing the dynamics
of neural spike patterns. Quantitatively, Retention-based model achieved
an average log-likelihood of 0.07 after 34 epochs of training.

Qualitative Analysis

Visual inspection of the generated spike patterns revealed a high degree of
similarity to the actual recorded data (See Figure 4.8). Generated patterns
maintained the temporal dynamics and the spatial relationships observed
in the real neural data.
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Figure 4.7: Average Training loss vs Epoch

Figure 4.8: Autoregressive generation of neural activity
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Scalability

The model’s performance remained stable even as the length of the input
sequences increased, showcasing its capability to handle long sequence
lengths efficiently, a key advantage over traditional sequence models.
Examining the scalability of the model reveals its consistent performance
across varying sequence lengths, a marked improvement over traditional
sequence-based models. The model demonstrated this robustness in a
practical experiment, generating 5000 images representing neuro pixel
data in just 3.5 minutes. Executed on a MacBook Air M1, these results em-
phasize the model’s effective operation on standard commercial hardware,
indicating its potential for scalable applications in processing extensive
neural datasets.

4.2 neural spike to behavior decoding

Dataset

For the neural decoding task, we used the dataset collected by Churchland
et.al [CCK+

10] for studying the relationship between activity of neurons
in motor cortices and movement task in non-human primates. The data
was recorded using electrode arrays implanted in the dorsal premotor
cortex (PMd) and from surface and sulcal primary motor cortex (M1). The
dataset includes neural spiking data from the primary cortex along with
simultaneously recorded monkey finger position, cursor position, and
target position. We projected the neural recording data to images of size
64x64 with individual neurons assigned to specific pixels in the image.
Since the data is recorded from only 130 neurons, the black and white
images representing neural activity looks sparse (See Figure 4.13).

Figure 4.9: t=1 Figure 4.10: t=2 Figure 4.11: t=3 Figure 4.12: t=4

Figure 4.13: Neural Spiking Activity at various timesteps
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Figure 4.14: Training loss vs Iterations

Architecture

We added extra fully connected layers to the pretrained autoregressive
model to compute finger-tip position from Retention Variables. Although
the previous model was trained on a different neural spiking datset,
we noticed that this architectural choice enables faster learning, when
compared to random initialization for all weight parameters.

Training

We trained the model on Macbook Air M1 laptop for 700 iterations, with a
batch size of 128. We used Adam Optimizer [KB14] with an initial learning
rate of 0.001. The training loss converged to a value of 534, after around
700 iterations (Fig 4.14).

Model Performance

The performance of the model in decoding behavioral outcomes from
neural spiking data was evaluated using R2 metric. Our model achieved
an R2 score of 75.62 for the neural decoding task. This is not close to the
current state of the art performance [AAG+

23] which is around 95.82.



5
C O N C L U S I O N

In conclusion, this thesis introduces and explores the concept of Retention-
based Autoregressive Models as a novel approach to address the limita-
tions of attention-based Transformer architectures in the context of neural
dynamics modeling. Autoregressive models based on the Transformer
architecture have demonstrated remarkable performance across various
machine learning domains. However, their inherent constraints, such as
finite context window size, quadratic computational cost, and scalability
issues with large token vocabularies, hinder their efficiency in handling
extensive neural dynamics datasets.

Retention-based models, introduced in this work, provide a solution
to these challenges. Unlike Transformers, Retention-based models can
process sequences of variable length without being confined to a limited
context window. The computational complexity of the Retention mecha-
nism is linear, making it more scalable for processing long sequences. By
incorporating Retention mechanisms with convolutional architectures, this
thesis presents an autoregressive generative model capable of efficiently
capturing neural dynamics and decoding behavior from observed neural
spiking data.

The empirical results showcase the superiority of Retention-based mod-
els over Transformer-based models in terms of efficiency and scalability.
In generative modeling tasks, Retention-based models demonstrate faster
inference, generating neural spike trajectories for a substantial number of
neurons and timesteps in just a fraction of the time required by traditional
Transformer models.

Overall, the introduction of Retention-based Autoregressive Models
represents a significant advancement in the field, offering enhanced ef-
ficiency and scalability for complex sequence processing tasks in neural
dynamics and beyond. This work opens new avenues for the application of
autoregressive models in understanding and modeling intricate temporal
dependencies in high-dimensional sequential data.

18



conclusion 19

In summary, this thesis contributes to the field of neuroscience by
providing new tools and perspectives for understanding brain dynamics
and behavior. The methodologies we have developed, while tailored for
neural data, hold promise for broader applications in various sequence
modeling tasks, highlighting the potential for cross-disciplinary impact.



6
A P P E N D I X

Code

Importantly, while our methods are developed with a focus on neural data,
we recognize their potential

Listing 6.1: Training Code

1 import os

2 import torch

3 import torch.nn as nn

4 import torch.optim as optim

5 import torchvision.transforms.functional

6 from torch.utils.data import DataLoader

7 from torchvision.transforms import ToTensor

8 from u_net import UNet

9 from PIL import Image

10 from torchvision import transforms

11 import json

12 # Define U-Net architecture (same as before)

13

14 # Hyperparameters

15 learning_rate = 0.001

16 batch_size = 1

17 num_epochs = 10

18 # data folder:

19

20 data_folder = ’/Users/abhinavmuraleedharan/MEng_project/

MEng-project/code/v_1/data/raw_data/binary_image_data’

21 # Create U-Net model, loss function, and optimizer

22 #device = torch.device("cuda" if torch.cuda.is_available()

else "cpu")

23 device = torch.device("mps")

24 model = UNet(n_channels=1, n_classes=1).to(device)

25 criterion = nn.BCEWithLogitsLoss() # Binary Cross-Entropy

loss for binary segmentation

20
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26 optimizer = optim.Adam(model.parameters(), lr=learning_rate

)

27

28

29 # function for loading i th image:

30

31 def load_image(i):

32 image_filename = os.path.join(data_folder, f’image_{i}.

png’)

33 if os.path.exists(image_filename):

34 # Open the image and convert it to grayscale and then

to a PyTorch tensor

35 image = Image.open(image_filename).convert(’L’) #

’L’ mode is for grayscale

36 transform = transforms.Compose([

37 transforms.Resize((64, 64)), # Resize the image if

required

38 transforms.ToTensor() # Convert the image to a

PyTorch tensor

39 ])

40 image = transform(image)

41 else:

42 print("Wrong filepath")

43 image = image.view(1,1,64,64)

44 return image

45

46

47 batch_idx = 100

48

49 train_losses = []

50 # Training loop

51 for epoch in range(num_epochs):

52 model.train()

53 running_loss = 0.0

54 x_input = torch.zeros(1, 1, 64, 64)

55 for i in range(28000):

56 # get inputs

57 x_input = 2**(-1)*load_image(i) + 2**(-1)*x_input

58 targets = load_image(i+1)

59 inputs, targets = x_input.to(device), targets.to(

device)

60
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61 # Zero the gradients

62 optimizer.zero_grad()

63

64 # Forward pass

65 outputs = model(inputs)

66

67 # Calculate the loss

68 loss = criterion(outputs, targets)

69

70 # Backpropagation and optimization

71 loss.backward()

72 optimizer.step()

73 running_loss += loss.item()

74 loss_val = loss.item()

75

76 # Print statistics every 10 batches

77 if i % 100 == 0:

78 print(f"Epoch {epoch + 1}/{num_epochs}, Image:

{i}, Loss: {running_loss / 100:.4f}")

79 # train_losses.append(running_loss/100)

80 train_losses.append({’epoch’: epoch, ’i’: i, ’

training_loss’: loss.item()})

81 running_loss = 0.0

82

83 # save model when at every 2000 th i

84 if i%1000 == 0:

85 print("Saving Checkpoint:")

86 checkpoint_path = f’checkpoint_epoch{epoch +

1}.pth’

87 torch.save(model.state_dict(), checkpoint_path)

88 losses_str = json.dumps(train_losses, indent=4)

89 with open(’training_log.txt’, ’w’) as file:

90 file.write(losses_str)

91

92

93

94 print("Training finished!")

Listing 6.2: Training Code

1

2 # training code with online computation of auxillary

variables.
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3 # batch size of 1

4 from u_net import UNet

5 import torch

6 import torch.nn as nn

7 import torch.optim as optim

8 import numpy as np

9 import os

10 from model import ExtendedUNet

11 from torchvision import transforms

12 from data import CustomDataset

13 from torch.utils.data import DataLoader

14 import json

15 #cuda

16 # Check for GPU #

17 device = torch.device("cuda" if torch.cuda.is_available()

else "cpu")

18 # device = torch.device("mps")

19 print(f"Using device: {device}")

20 ########

21

22 #load UNet model ####

23

24 u_net_model = UNet(n_channels=1,n_classes=1)

25 u_net_model.load_state_dict(torch.load(’U_Net.pth’,

map_location=torch.device(’cpu’)))

26 # u_net_model = torch.load(’U_Net.pth’, map_location=torch.

device(’cpu’))

27 fc_layers = [64*64, 512,512,512,256, 128,64,32,16,8] #

Example sizes, adjust as needed

28 output_size = 3 ###

29

30 # instantiate model

31 model = ExtendedUNet(u_net_model, fc_layers, output_size).

to(device)

32

33 #print number of parameters::

34

35 num_params = sum(p.numel() for p in model.parameters())

36 print(f"Number of parameters in the model: {num_params}")

37

38 # Define lodd function and optimizer

39 criterion = nn.MSELoss()
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40 optimizer = optim.Adam(model.parameters(), lr=0.001)

41

42 # Training loop

43 num_epochs = 10

44

45 # Define image transformations

46 transform = transforms.Compose([

47 transforms.Resize((64, 64)),

48 transforms.ToTensor()

49 ])

50

51 # Create the dataset

52 dataset = CustomDataset(img_dir=’image_data/’,

53 npy_file=’Y_target.npy’,

54 transform=transform)

55

56 # Create the DataLoader

57 data_loader = DataLoader(dataset, batch_size=128, shuffle=

True)

58 model = model.float()

59 # Number of epochs

60 num_epochs = 10 # You can modify this number based on your

requirements

61 print("Length of dataloader",len(data_loader))

62 # Transfer model to GPU if available

63 device = torch.device("cuda" if torch.cuda.is_available()

else "cpu")

64 model.to(device)

65 train_losses_1 = []

66 train_losses_2 = []

67 # Training Loop

68 i = 0

69 for epoch in range(num_epochs):

70 model.train() # Set the model to training mode

71 running_loss = 0.0

72 i = 0

73 for batch in data_loader:

74 print("in training loop")

75 # Get data

76 images = batch[’image’].to(device)

77 numpy_data = batch[’numpy_data’].to(device)

78
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79 # Zero the parameter gradients

80 optimizer.zero_grad()

81

82 # Forward pass

83 outputs = model(images)

84

85 # Compute the loss

86 loss = criterion(outputs, numpy_data)

87

88 # Backward pass and optimize

89 loss.backward()

90 optimizer.step()

91 print(loss.item())

92 train_losses_1.append({’epoch’: epoch, ’i’: i, ’

training_loss’: loss.item()})

93 if i%100 == 0:

94 print("Saving Checkpoint:")

95 checkpoint_path = f’checkpoint_epoch{epoch +

1}.pth’

96 torch.save(model.state_dict(), checkpoint_path)

97 losses_str = json.dumps(train_losses_1, indent

=4)

98 with open(’training_log_1.txt’, ’w’) as file:

99 file.write(losses_str)

100 running_loss += loss.item()

101 i = i + 1

102

103 # Print statistics

104 epoch_loss = running_loss / len(data_loader)

105 print(f"Epoch {epoch+1}/{num_epochs}, Loss: {epoch_loss

:.4f}")

106 # append training loss

107 train_losses_2.append({’epoch’: epoch, ’i’: i, ’

epoch_loss’: epoch_loss})

108 checkpoint_path = f’checkpoint_epoch{epoch + 1}.pth’ #

checkpoint path

109 torch.save(model.state_dict(), checkpoint_path) # save

model

110 losses_str = json.dumps(train_losses_2, indent=4)

111 with open(’training_log_2.txt’, ’w’) as file:

112 file.write(losses_str)

113
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114 print("Training complete")

115

116 # Save the final trained model

117 torch.save(model.state_dict(), ’trained_model_final.pth’)
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