Abhinav Muraleedharan

Graduate Student, University of Toronto, Toronto, Canada Abhinav. Muraleedharan@mail.utoronto.ca—abhi
98m@cs.toronto.edu — +1 (437) 430-2622 — Linkedin — abhinav
muraleedharan.com

RESEARCH INTERESTS

Quantum Algorithms, Machine Learning, Quantum Dynamics, Reinforcement Learning, Autoregressive Generative Models, Alignment of Large Language Models.

EDUCATION

University of Toronto, Toronto, Canada

May 2024 —

PhD in Computer Science

Advisors: Prof. Roger Grosse and Prof. Nathan Wiebe

University of Toronto, Toronto, Canada

Master of Engineering, (AI/Quantum Specialization)

Thesis: Retention based Autoregressive Models for modelling neural dynamics

Jan 2022 — June 2024 Cumulative GPA: 4.00/4.00

National Institute of Technology, Karnataka, India

June 2015 — May 2019

Bachelor of Technology: Major in Mechanical Engineering and Minor in Computer Science

ACADEMIC EXPERIENCE

Nathan Wiebe Research Group

Research Assistant

Toronto, Canada June 2023 — Present

- Development of novel Quantum Algorithms for simulating non-unitary quantum dynamics.
- Development of novel Quantum Algorithms for solving nonlinear ordinary differential equations.
- Conducted comprehensive analyses of query complexity and computational complexity for quantum algorithms, providing
 insights into algorithmic efficiency and performance.
- Conducted perturbation analysis to derive precise error bounds for quantum simulation algorithms, ensuring accuracy and reliability in quantum computational simulations.

Computational Modeling and Design Optimization Under Uncertainty Group

Toronto, Canada

 $Research\ Assistant$

September 2023 — December 2023

September 2023 — February 2024

- Developed novel autoregressive generative models for modeling stochastic dynamics of neural spiking patterns.
- Introduced 'Retention' Mechanism for equipping Autoregressive models with long-context memory.
- Conducted a rigorous evaluation of the model against Transformer-based Autoregressive Models, demonstrating its superiority in scalability and efficiency.
- Thesis Link: Retention based Autoregressive Models for modelling neural dynamics

PROJECTS

Cogniframe Inc Research Scientist

Toronto, Canada

• Quantum Algorithms for solving Navier Stokes Equation.

- Quantum Machine Learning Algorithms for Supervised Machine Learning Tasks.
- Implemented efficient GPU-based simulation of medium-scale Quantum Circuits.

PUBLICATIONS

Journal paper

In-Review

• Muraleedharan, A. (2023). Beyond dynamic programming. arXiv preprint arXiv:2306.15029

Abhinav Muraleedharan February 2024

SELECTED COURSES

Master's Courses

- Introduction to Quantum Algorithms
- Special Reading Course in Computer Science (Quantum Simulation Methods)
- Foundations of Data Analysis and Machine Learning
- AI Applications in Robotics
- Perception Algorithms (Computer Vision)
- MEng project (Thesis)

AWARDS AND ACHIEVEMENTS

Joint Entrance Examination (JEE) Main, 2015

Ranked in the top 0.5% of participants nationwide

India May 2019

Indian Innovation Challenge, 2017

India

Selected as one of the top 20 finalists out of 20,000 students across universities in India

Recognized for innovative ideas and problem-solving skills in a national-level innovation competition.

Year 2017

OTHER EXPERIENCES

Raytheon Technologies

Associate Engineer

Bangalore, India

June 2019 — Sep 2021

- Filed 1 Trade Secret.
- Developed Machine Learning Algorithms for Computational Design Of Aircraft Components.
- Computational Design and Development of Aircraft Components.
- Developed Motion Planning Algorithms for generating Dynamically Stable Chaotic Motion Trajectories for UAVs/missiles.

Minds and Machines, Springer Journals

Toronto, Canada

Reviewer

SKILLS

- Programming Languages: Proficient in C++, Python (including libraries such as NumPy, SciPy, Pandas), experience with parallel programming and GPU computing.
- Quantum Computing: Familiarity with quantum algorithms, quantum circuit simulation, quantum error correction, and quantum machine learning concepts.
- Computational Physics: Experience in numerical methods, computational fluid dynamics (CFD), finite element analysis (FEA), and other computational techniques relevant to physics simulations.
- Machine Learning: Understanding of machine learning algorithms, deep learning frameworks (e.g., PyTorch), and experience in applying them to solve real-world problems.
- Software Development: Proficient in software development methodologies, version control systems (e.g., Git), and software engineering best practices.
- Data Analysis: Strong data analysis skills including data preprocessing, statistical analysis, and data visualization techniques.
- Problem Solving: Ability to quickly grasp complex concepts, identify problems, and propose effective solutions.
- Communication Skills: Excellent written and verbal communication skills, including the ability to convey technical information effectively to diverse audiences.
- Collaboration: Experience working collaboratively in multidisciplinary teams, fostering a positive team environment, and effectively managing project tasks and deadlines.

REFERENCES

Prof. Nathan Wiebe

Professor, Department of Computer Science, University of Toronto, Toronto, Canada

E-mail: nathan.wiebe@cs.toronto.edu

Scholar Profiles: University of Toronto - Personal Page — Google Scholar

Abhinav Muraleedharan February 2024

Prof. Alan Aspuru Guzik

 $Professor,\ Department\ of\ Computer\ Science,\ University\ of\ Toronto,\ Toronto,\ Canada$

E-mail: aspuru.assistant@utoronto.ca

Scholar Profiles: University of Toronto - Personal Page — Google Scholar

Prof. Prasanth Nair

Professor, Institute for Aerospace Studies, University of Toronto, Toronto, Canada

E-mail: pbn@utias.utoronto.ca

Scholar Profiles: University of Toronto - Personal Page — Google Scholar —